Manual For Operation

UCS 200Nx.2 / .3

The ultra-compact simulator

UCS 200N - designed as a modular system - is the most intelligent solution offering exactly what you need for fullcompliant immunity tests against transients. The distinct operation features, convenient DUT connection facilities, a clearly arranged menu structure and display philosophy as well as the free-programmable pulse mode called *Freestyle* make testing easy, reliable and safe. Extendable by a variety of test accessories the UCS 200N is a universal equipment for abroad range of recommendations even for high current applications up to 200A

- ISO 7637
- SAE J1113
 - Manufacturer spec as per GM, Ford, Chrysler, Mercedes, BMW, VW, PSA, Fiat

Version: 2.41 / 04.10.2022 Replaces: 2.40 / 12.05.2022 Filename: UserManual-UCS200Nx.2_.3-E-V2.41 Printdate: 04.10.22

AMETEK CTS GmbH Sternenhofstrasse 15 4153 Reinach BL1 Switzerland

Phone: +41 61 204 41 11 Fax: +41 61 204 41 00

URL: <u>http://www.ametek-cts.com</u>

Copyright © 2022 AMETEK CTS GmbH

All right reserved. Information in earlier versions. Specifications subject to change.

.

Contents

1.	Model Overview 1.1. Models of the UCS 200N series					
2.	Standards covered by UCS 200Nx series					
3.	Operating Functions					
-	3.1.	Front view				
	3.2.	Rear view	9			
4.	Onor	ation	11			
4.	4.1.	Main Menu				
	4.1.	Service				
	4.3.	Setup				
	4.4.	Tests pulse1, pulse 2				
	4.4.1.					
	4.4.2.					
	4.4.3.					
	4.5.	EFT Burst pulse 3a/3b as per ISO 7637-2				
	4.5.1.					
	4.5.2. 4.5.3.					
	4.5.3. 4.5.4.	Test Routine as per ISO 7637				
	4.6.	Burst generation				
	4.6.1.	Test Set-up				
	4.6.2.	Coupling decoupling network				
	4.6.3.	Tests with the capacitive coupling clamp ACC				
	4.7.	Freestyle				
	4.8.	Standards	22			
5.	Micro	o pulse generation	23			
0.	5.1.	Pulses as per ISO 7637				
	5.2.	Pulses as per SAE J 1113				
	5.2.1.					
	5.3.	Pulses as per JASO D 001	25			
	5.4.	Pulses as per MBN 10 284 part 2 : August 2001				
	5.4.1.					
	5.5.	Special pulses as per VW, Mercedes, Ford, Opel				
	5.6.	UCS 200Nx.3 as per VW TL 820 66 with Pulse 1 and Pulse 2 (4 Ω)				
	5.6.1. 5.6.2.					
6.	Test	Equipment UCS 200N				
	6.1.	Battery switch				
	6.2.	The coupling network				
	6.2.1.	UCS 200N Coupling network general diagram				
7.	Tech	nical data	33			
	7.1.	EFT / Burst pulse 3a/3b as per ISO 7637-2				
	7.1.1.					
	7.1.2.	0				
	7.1.3.					
	7.2.	Micro pulses 1 & 2 as per ISO 7637-2				
	7.2.1.	Pulse specification and settings				
	7.2.2. 7.2.3.	Trigger Input / Output				
	7.2.3.	Coupling Network				
	7.4.	General				
~						
8.		tenance				
	8.1.	General				
	8.2.	Test set-up				
	8.3. 8.3.1.	Calibration and Verification				
	8.3.2.	,				
	0.0.2.					

	8.3.3. 8.3.4. 8.4.	Calibration of Accessories made by passive components only Periodically In-house verification Connectors to the DUT	40
9.	Delive	əry	42
	9.1.	Basic accessory	
	9.2.	Additional Accessories and options (separately available)	43
10.	Appe	ndix	45
	10.1.	Declaration of CE-Conformity	45
	10.1.1.	UCS 200N50	45
	10.1.2.	UCS 200N100	46
	10.1.3.	UCS 200N150	47
	10.1.4.	UCS 200N200	48
	10.2.	UCS 200N – internal Voltage drop	49
	10.3.	UCS 200N - General Diagram	50
	10.4.	Main diagram control connection	51
	10.5.	Main diagram high voltage connection	53
	10.6.	Setup for ICC testing as per ISO 7637-3	54

1. Model Overview

1.1. Models of the UCS 200N series

Each UCS 200Nxxx includes modules for the following pulses:

- Pulse 3a/3b up to 1000V peak voltage, wave shape 5/150ns
- Pulse 1, 2a as per ISO 7637-2,
- Other micro pulses SAE J1113, GM3097, Ford ES-XW7T, ChryslerPF9326, DC10614, MBN10284, MBN, BMW, VW, PSA etc.

In addition the UCS 200N series includes:

- Battery switch,
- Coupler 80V/xxxA
- Single DUT output

UCS 200Nx.2-series

UCS 200N50.2	Coupling network 80V/50A	19" / 3HU
UCS 200N100.2	Coupling network 80V/100A	19" / 6HU
UCS 200N150.2	Coupling network 80V/150A	19" / 9HU
UCS 200N200.2	Coupling network 80V/200A	19" / 9HU

UCS 200Nx.3-series *

UCS 200N50.3	Coupling network 80V/50A	19" / 3HU
UCS 200N100.3	Coupling network 80V/100A	19" / 6HU
UCS 200N150.3	Coupling network 80V/150A	19" / 9HU
UCS 200N200.3	Coupling network 80V/200A	19" / 9HU

* NOTE:

JASO D001 (pulses A2, B2, D2) are not inlcluded in the .3 models

Instead of JASO, the .3 series supports micro pulses VW TL 82066 Pulse 1 and Pulse 2 with 4 ohm requirement.

2. Standards covered by UCS 200Nx series

The UCS 200Nx series covers the following standards

- ISO 7637-2:2011 Pulse 1, 2a, 3a, 3b
- most manufacturer spec
- SAE J1113
- SAE J 1455
- JASO D001 (not UCS 200Nxx.3 models)

Pulse 1. 1a, 1b, 2, 3a, 3b

Pulse Mutual and Inductive

Pulse A2, B2 and D2

3. Operating Functions

3.1. Front view

- 1 Display
- 2 Function keys "F1...F7"
- 3 "Test On"
- 4 Knob (Inc / Dec)
- 5 Cursor keys " \leftarrow " and " \rightarrow "
- 6 Exit
- 7 Escape

- 8 Oscilloscope trigger
- 9 HV pulse output 50 ohm
- 10 Earth plug for verification
- **11** LED: Indication battery switch
- **12** LED: Pulses available at + output
- **13** LED: Burst 3a/3b pulses
- 14 DUT test supply

1. Display

All functions and parameters are displayed (8 lines with max. 40 characters).

2. Function keys "F1 .. F7"

Parameters and functions, displayed in the lowest line, can be selected with the related function key.

3. Test On

By pressing the key "Test On" the test procedure is initiated with the preselected parameters. The red LED indicates the trigger of a burst event.

4. Knob (Inc / Dec)

The knob increments or decrements test parameters with a numeric value or selects from a list of parameters.

5. Cursor keys

Parameters and functions can be changed on-line. The selection of these parameters is realized with the cursor moving to the left or to the right.

6. Exit

Pressing of the Exit function will cause a reset of the firmware. This is only possible if no test routine is running.

7. ESC

When pressing the ESC button the user moves back one page in the menu.

8. BNC - CRO Trigger

At the BNC output the generator trigger can be checked, e.g. the burst duration, the burst repetition rate and the spike frequency (+15 V rectangular). This output signal can also be used to trigger external measuring devices (e.g. an oscilloscope)

9. HV pulse output 50 ohm

External coupling devices such as the capacitive coupling clamp are connected to the coaxial 50 ohm output. Also the pulse parameters, on open circuit and 50Ω load condition (pulses 3a/3b), must be verified at this coaxial output.

10. Earth plug for verification

This earth plug can be used during pulse verification special for pulse 3a/3b verification.

- 1 Display
- 2 Function keys "F1...F7"
- 3 "Test On"
- 4 Knob (Inc / Dec)
- 5 Cursor keys " \leftarrow " and " \rightarrow "
- 6 Exit
- 7 Escape

- 8 Oscilloscope trigger
- 9 HV pulse output 50 ohm
- **10** Earth plug for verification
- **11** LED: Indication battery switch
- 12 LED: Pulses available at + output
- 13 LED: Burst 3a/3b pulses
- 14 DUT test supply

11. Indication Battery Switch

The red LED shows whether the battery switch is off or on. For negative pulses the battery switch is switched OFF / ON during pulse generation.

12. Red LED indication:

+ output, Micropulses, Burst 3a/3b pulses, External pulses, The LEDs show the type of pulse and the output at which they are available.

13. Red LED indication:

The LEDs show the output on coaxial output for pulses 3a and 3b. This is the connection point for the external coupling devices .

14. DUT test supply

The coupling / decoupling network is part of the generator. The DUT is powered via the safety laboratory plugs at the front panel of the simulator. The nominal battery supply is 80V/50A. Higher currents, up to 200A, are available on special request.

3.2. Rear view

- **1** DUT test supply input
- 6 External trigger7 Warning lamp

10 Power on switch / Fuse

- 2 Reference earth connection3 AUX Pulse input from ext. LD
 - ext. LD 8 Safety circuit .D 9 Mains selector 115V / 230V
- 4 Control input for ext. LD
- 5 Ext Impedance

1 DUT test supply input

The power supply for the DUT is connected to the safety laboratory connectors + and -. The front panel output is decoupled by the internal coupling/ decoupling network.

2 Reference ground connection

The generator has to be connected to the reference ground plane of the test set up.

3 Pulse input for one external generator

The UCS 200N includes a central coupling matrix. The pulse output of an external **Load Dump LD200** or **MPG 200 S20** generator can be connected to this input. The Load Dump pulses then will be available at the central DUT output at the front panel of the UCS 200N

4 Control input for one external generator

The UCS 200N includes a central coupling matrix. The control output of the external generator can be connected to this input. The external generator is able to control the UCS 200 coupling network.

5 External impedance

At this input an external resistor can be added to achieve impedance additional to those the generator includes. Select the "External Rs" mode in the setup menu. The internal resistor automatically is set to 10Ω And the external resistor is added.

6 External trigger

One single event, burst, surge, voltage dip or ESD can be released. Trigger level 5-15V positive going.

7 Warning lamp control

This relays contact (230V / 6A) can control warning lamps which may be installed in the test set-up (Test On).

8 Safety circuit

To connect an external security circuit.

9 Mains selector

Selection of 115V / 230V

10 Power on switch

The switch is part of the mains filter. Mains fuses are part of the filter. (230V / 1A and 115V / 2A)

Manual for Operation

V 2.41

- 11 USB interface
- 12 Parallel interface GPIB / IEEE 488
- 13 Remote control connector CN
- 14 Fail input Fail 1
- 15 Fail input Fail 2

- DUT test supply input 1
- External trigger 6
- 2 Reference earth connection 3 AUX Pulse input from ext. LD
- 7 8
- Control input for ext. LD 4
- 5 Ext Impedance
- Warning lamp Safetv circuit
- Mains selector 115V / 230V
- 9 10 Power on switch / Fuse
- 11 USB interface
- 12 Parallel interface GPIB / IEEE 488
- 13 Remote control connector CN
- 14 Fail input Fail 1
- 15 Fail input Fail 2

11 **USB** interface.

Parallel interface GPIB / IEEE 488, IEEE 488 interface with IEEE connector. 12

13 **Remote control connector CN**

External coupling devices are controlled via this remote control connector.

Fail detection FAIL 1 (TEST STOP) 14

The BNC input FAIL 1 can be used for DUT monitoring. In case of a low going signal (to chassis ground) the UCS 200N will stop pulse generation and the actual running test routine is paused. The test routine than can be stopped completely or can be continued from break point. A message of FAIL 1 is indicated in the LCD display.

Fail detection FAIL 2 (TEST PAUSE) 15

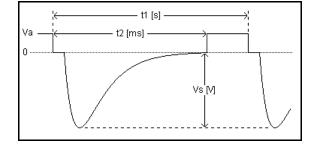
The BNC input FAIL 2 can be used for DUT monitoring In case of a low going signal (to chassis ground) the UCS 200N will stop pulse generation and the actual running test routine is paused as long as the low level signal is available at the FAIL 2 input. The test routine continues automatically as soon as the low level signal goes to high level. A message of FAIL 2 is indicated in the LCD display as well as in the iso.control software.

4. Operation

The simulator is operated by an easy menu control system. Seven function keys are available to select parameters and functions. All functions are indicated on the display; max. 8 lines and 40 characters.

The selected parameter is blinking and can be changed by turning the knob (incr./decr.).

- \leftarrow : The digit to be changed can be selected with the cursor (\leftarrow).
 - Setted values are direct indicated on the screen.
 - Status on the bottom lines shows the desired status after pressing the function key.
- **ESC**: ESC will take you back to the previous level in the menu and set the displayed values. The latest settings are stored automatically and will be recalled when the menu is selected again.
- **EXIT** : The firmware will reset to the main screen.


UCS 200N Automotive Transient Generator	Micro Pulses 1, 2 Burst Pulses 3a, 3b Freestyle	
Automotive Transient Generator		
V 1.04a16	SWN: 031016	
		-

The serial number and the version number SWN are used for traceability reasons. These numbers are listed in the test reports and calibration certificates.

These numbers also are listed within the test reports generated by the iso.control software

The following short terms will be used within the next pages:

Pul +/- Ri rep (t1) to (t2) tri	Test level Type of pulse to be generated Polarity of the generated pulse Internal source resistance Repetition rate of the generated pulses Off time of the battery supply voltage Trigger mode; AUTO, MAN or EXT Number of pulses to be generated
11	Number of pulses to be generated

General parameter restrictions:

Repetition time t1The minimum repetition time t1 is limited by the power capability of the charging rectifier.
The pulse repetition time t1 depends on the charging voltage with the following restrictions:
20V - 150V0.2s
155V - 400V0.5s
405V - 600V1.0s

Switch Off time t2	For protect the device at negative pulse, the "batteries off time" to or (t2) must be longer
	than the pulse duration (td).

MAN / EXT Trigger The repetition time is limited by the setting of the repetition time t1

4.1. Main Menu

Other pulses different to ISO 7637 and the standards listed under 9.4 can be generated in Quick Start menu by changing the related parameters or by using the Freestyle programming mode.

MAIN	/ENU					
F1: Pulse 1 F2: Pulse 2 F3: Pulse 3a / 3b		F5 :	Freesty Externa Standaı	l		
F7 : Se	ervice					
F1	F2	F3	F4	F5	F6	F7

F1 Pulse 1

Pushing the function key F1 opens the test menu which supports the so called test pulse 1. The basic pulse for this is defined in ISO 7637-2:2004. The menu F1 supports various different and modified type pulse 1 tests. In Quickstart mode all parameters can be adjusted during the running test.

F2 Pulse 2

Pushing the function key F2 opens the test menu which supports the so called test pulse 2. The basic pulse for this is defined in ISO 7637-2:2004. The menu F2 supports various different and modified type pulse 2 tests. All parameters can be adjusted during the running test.

F3 Pulse 3a / 3b

Pushing the function key F3 opens the test menu which supports the so called test pulse 3a and 3b. The basic pulse for this is defined in ISO 7637-2.3. The menu F3 supports different preprogrammed test level for pulse 3a and 3b tests. All parameters can be adjusted during the running test. The UCS 200N Sx have no pulses 3a/3b.

F4 Freestyle

The Freestyle menu makes it possible to program the rise time and the pulse duration of the generated transients over a broad range. This enables to easy adapt the generators output pulses to new requirements.

It also allows the user to program his own specific test pulses, e.g. to test beyond the existing requirements. This mode is used for pulses in the us and ms range for rise time and pulse duration. It can not be used for programming parameters in the ns range.

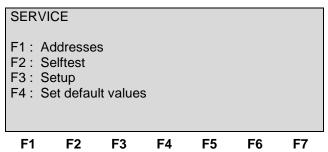
The special models of UCS 200N Sx have no freestyle function.

Remark : The pulses in Freestyle are not defined standard pulses

F5 External

The operator can connect external devices (like Load Dump, MPG 200 S20...) at the rear of the UCS 200N. The pulses are then available at the central output of the UCS 200N. By selecting F5: External the operator enables the internal coupling matrix to be used via the front panel of the external generator. Coupling to 50Ω output the LED does not light on.

F6 Standards


In this menu the UCS 200N supports the following standard pulses:

- JASO Pulses A2, B2, D2 (not available for the UCS 200Nx.3 series)
- SAE Pulse mutual, pulse inductive
- ISO Pulse 6 ISO 7637-1:1990

F7 Service

Set-up menu of the generator.

4.2. Service

F1 Addresses

The addresses of the AMETEK CTS GmbH and AMETEK CTS Germany GmbH are shown. The addresses of all AMETEK CTS sales agencies are listed on the web site of EM Test under :

www.emtest.com

F2 Selftest

Together with the user the firmware can test some parts of the equipment. The software will clearly explain the self-test procedure.

F3 Setup

The software will clearly explain the set-up procedure.

F4 Set default values

Set the following standard parameters to the factory settings: ISO 7637-2-3:2004, Jaso D001, SAE J1455

4.3. Setup

F2 : LC F3 : Int F4 : Ke	nange la CD back terfaces eyboard- ower-on	lighting •Beeper	•	he ände	ern	
F1	F2	F3	F4	F5	F6	F7

F1 Change language

The user can chose between two languages, German and English.

F2 LCD backlighting

With the use of F2 the backlighting can be switched On or Off. Additionally the Auto Off function can be programmed to switch off the backlighting after a specified time the generator has not been in operation (1 - 30min).

F3 Interfaces

This menu will help the user to define the status of the integrated serial and parallel interfaces, e.g. the baud rate of the RS 232 or the address of the IEEE interface.

F4 Keyboard-Beeper

F1 is the selector for the beeper ON/OFF mode.

The beeper is always on when a test routine is finished. To indicate that a running test is finished the beeper sounds 3 times.

F5 Power-on counter

Pressing of F5 will show the total power-on time and testing time of the test equipment.

4.4. Tests pulse1, pulse 2

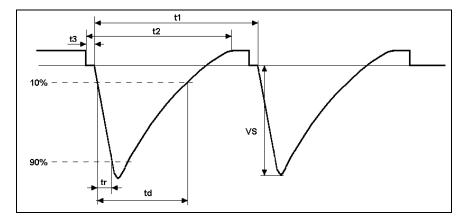
The pulse 1 and pulse 2, have the same menu structure. The following sections shows the common menu-items.

4.4.1. Quickstart (pulse 1, pulse 2)

The pulses 1, 2, 3a / 3b offers a Quickstart menu. Easy and very fast operation of all standard functions of the equipment. The latest simulator settings are stored automatically and will be recalled when Quick Start is next selected.

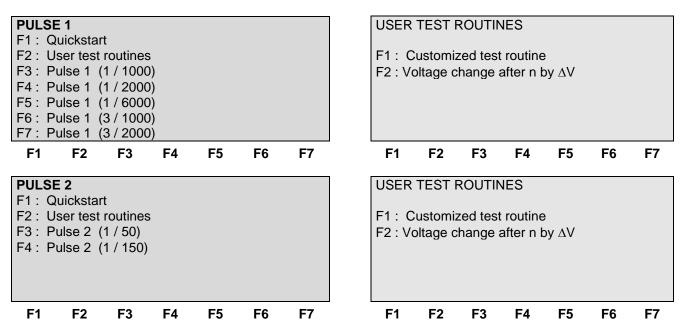
QUICK START				
				_
V = 100 V	pul	=	2	2
+/- = -	Ri	=		10 Ohm
t1 = 1.0 s	t2	=	8	8.0ms
tri = Auto		=		Supply
	cpl	=	•	Supply
n = 10000				
START CHANGE				
F1 F2 F3	F4	F5	F6	F7

Press *CHANGE* and the test parameters can be changed.


Select the desired parameter with the related function key and change the value by turning the front panel knob. The cursor allows the user to define the digit to be changed (fast or slow change).

Press **START** and the test starts immediately with the displayed test parameters.

The operator now can navigate with the *Cursor* from parameter to parameter. The blinking parameter can be changed by turning the front panel knob.


Press **ESC** will bring the user back to the previous menu level.

All function keys except F2 (manual trigger) can Stop the test routine.

4.4.2. User Test Routines (pulse 1, pulse 2)

The user can program, save and recall his own specific test routines. The next pages shows the selection of the functions.

4.4.3. Standard Test Routines (pulse 1, pulse 2)

The operating software of the UCS 200N includes several preprogrammed Standard Test Routines which can be easily called up by pushing the related function key. All test parameters are set as specified in the standard, so that the operator can start the test procedure immediately.

For Pulse 1 and Pulse 2 the basic standard is the ISO 7637-2:2004.

Pulse 1 test routine includes the following pulses:

- $1/1000\mu$ s with Ri = 20Ω as per SAE J1113
- $1/2000 \mu s$ with Ri = 10Ω as per ISO 7637
- $1/6000\mu s$ with Ri = 30Ω as per MBN 10284
- $3/1000\mu$ s with Ri = 50Ω as per ISO 7637
- $3/2000 \mu s$ with Ri = 4Ω as per MBN 22100

PULSE F1 : Q F2 : U F3 : P F4 : P	uicksta ser test ulse 2	routine (1 / 50)				
F1	F2	F3	F4	F5	F6	F7

Pulse 2 test routine includes the following pulses:

- 1/50 μ s with Ri = 2 Ω as per ISO 7637
- 1/150 μs with Ri = 30 Ω as per MBN 10284

All other pulse 1 and pulse 2 variations in other manufacturer specifications can be covered by selecting a different internal resistor Ri or by using the *Freestyle* programming mode (see paragraph 10.5)

4.5. EFT Burst pulse 3a/3b as per ISO 7637-2

4.5.1. Operation

The Burst menu offers different test routines for burst testing.

PULSE 3a/3b	USER TEST ROUTINES
F1 : Quickstart F2 : User test routines F3 : Pulse 3a -150V ISO 7637 12V F4 : Pulse 3a -200V ISO 7637 24V F5 : Pulse 3b +100V ISO 7637 12V F6 : Pulse 3b +200V ISO 7637 24V	F1 : Customized test routine F2 : Voltage change after T by ΔV F3 : Frequency change after T by Δf F4 : Random burst release
F1 F2 F3 F4 F5 F6 F7	F1 F2 F3 F4 F5 F6 F7

4.5.2. Quick Start

Easy and very fast operation of all standard functions of the equipment. The latest simulator settings are stored automatically and will be recalled when Quick Start is next selected.

QUIC	< STAR	Г				
V =	100	/	f	=	10kHz	
t4 =	10m	5	t5	=	100ms	5
cpl =	+		+/-	=	+(3b)	
T =	01:0	Omin				
STAR	CHANG	GE				PRINT
F1	F2	F3	F4	F5	F6	F7

Press CHANGE and the test parameters parameter can be changed.

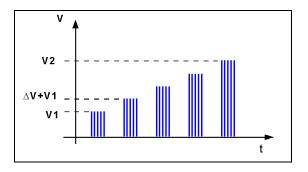
Select the desired parameter with the related function key and change the value by turning the front panel knob. The cursor allows the user to define the digit to be changed (fast or slow change).

Press **START** and the test starts immediately with the displayed test parameters.

The operator now can navigate with the *Cursor* from parameter to parameter. The blinking parameter can be changed by turning the front panel knob.

Press **ESC** will bring the user back to the previous menu level.

All function keys except F2 (manual trigger) can **Stop** the test routine.


4.5.3. User Test Routines

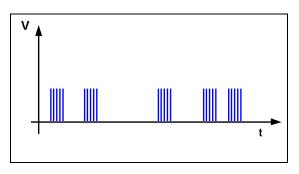
The user can program, save and recall his own specific test routines. The next pages shows the selection of the functions. After selection the last used test parameters will be indicated on the display.

Customized test routines

The software controls user test routines according to the specification of the user. All limitations are the same as defined under Quick Start.

Voltage change after T by ΔV The test voltage is increased from V1 to V2 by steps of ΔV after the defined test time T. All limitations are the same as defined under Quick Start. The limitation of the max. generated number of spikes is related to the higher voltage of V1 or V2.

Frequency change after T by Δf


The spike frequency is changed from f1 to f2 by steps of Δf after a defined test time. All limitations are the same as defined under Quick Start. The limitation of the max. generated number of spikes is related to the higher voltage of V1 or V2.

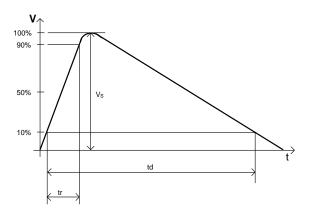
tr	>=	100 ms
f1	<=	f2
td	>=	5.0 ms
td	>=	5 / f1
tr -td	>=	50 ms

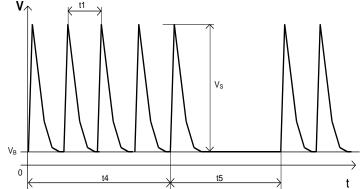
Note: The maximum values for frequency, burst duration td and voltage are in dependence of each other and therefore limited by the generator performance. The practical limits of the UCS200M are 20kHz for f2 and 50ms for the burst duration td. The limits of the generator model UCS 200N4 are approx. 10 times higher.

Random burst release

No repetition rate is selected. The single burst will be triggered by statistics in the limits of 20 to 2000ms as time between two Bursts. All limitations are the same as defined under Quick Start.

4.5.4. Test Routine as per ISO 7637


The display shows a list of test levels as per the standards ISO 7637.


STAI	NE	DARD TI	EST R	OUTINES	;		
F3 F4 F5 F6	:	Pulse 3 Pulse 3 Pulse 3 Pulse 3	Ba Bb	-150V -200V +100V +200V		SO 7637 SO 7637 SO 7637 SO 7637 SO 7637	7 / 24V 7 / 12V
F1		F2	F3	F4	F5	F6	F7

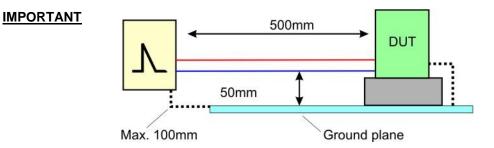
Select the recommended test level by pressing the function key Fx and start the test immediately.

4.6. Burst generation

As per ISO 7637 the test pulses 3a and 3b are defined as follows:

Definition of a single pulse

Definition of the burst

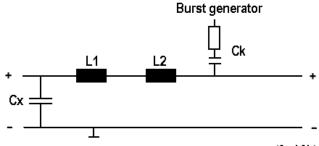

	ISO 7637 3a				
Parameter	12V System 24V System				
VS	0V150V	0V200V			
Ri	50Ω	50Ω			
td	0.1µs	0.1µs			
tr	5ns	5ns			
t1	100µs	100µs			
t4	10ms	10ms			
t5	90ms	90ms			

ISO 7637 3b					
12V System	24V System				
0V - +100V	0V -+ 200V				
50Ω	50Ω				
0.1µs	0.1µs				
5ns	5ns				
100µs	100µs				
10ms	10ms				
90ms	90ms				

Discharge switch:

The discharge switch is a highly reproducible semiconductor switch. Spike frequencies up to 200kHz are by a factor of 20 higher than recommended in the actual standards. This means of course that also the pulse energy would be 20 times higher.

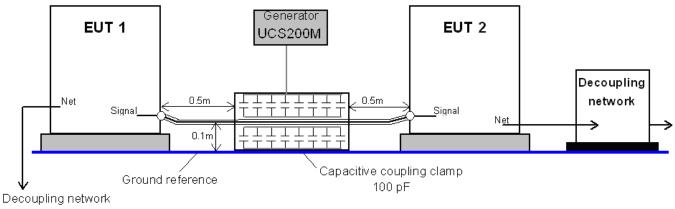
4.6.1. Test Set-up

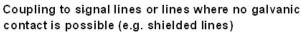

- The test generator and the coupling network should be connected directly to the reference ground plane.
- For the pulses 3a/3b the connection generator groundplane shall not be longer than 100mm. The connection shall be suitable for high frequencies.
- The DUT shall be isolated from the reference ground plane by 0.1m. This is also recommended for all connected lines. The DUT should only be grounded if it is also recommended for the real installation in a vehicle.
- Whenever possible the test set-up and the cabling should always be the same.
- The diodes or zeners are optional only for pulse 5b (suppressed)
- The load resistor Rv is optional. This resistor is used to match the generator to the low impedance battery supply system. So far, as known, this is only used within the Ford ES-XW7T specification where $Rv = 0.7\Omega$

During the test the measuring circuit shall be removed from the test setup

4.6.2. Coupling decoupling network

The decoupling part of the coupling network has to:


- to decouple the pulses from the battery or the power supply
- protect other systems that are connected to the same power supply and realize a high impedance of the power supply, e.g. battery supply.



Coupling / decoupling network for the UCS 200M (3a / 3b)

4.6.3. Tests with the capacitive coupling clamp ACC

- The coupling on signal lines is realized with the capacitive coupling clamp.
- The coupling clamp has to be terminated with a 50 ohm resistor.
- The clamp should be placed in a distance of 0.5m to the equipment under test. When using shorter distances, the DUT may be influenced by radiation.
- If the DUT is built up by two different units, the test should be conducted on each single unit with the required distance.

4.7. Freestyle

The Freestyle menu makes it possible to program the rise time and the pulse duration of the generated transients over a broad range. This enables to easy adapt the generators output pulses to new requirements. It also allows the user to program his own specific test pulses, e.g. to test beyond the existing requirements. This mode is used for pulses in the μ s and ms range for rise time and pulse duration. It can not be used for programming parameters in the ns range.

Warning: The pulses in the Freestyle menu don't correspond to a defined standard!

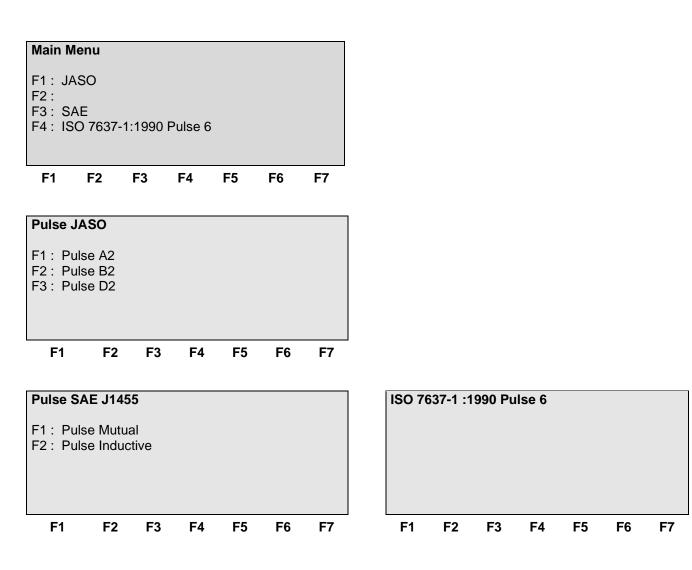
The accuracy of the voltage, td and tr are depending on the pulse setting and the load. A "typical" pulse in open circuit is the reference for the linearisation. Pulses with other parameters are more or less accurate.

The exact pulse parameter must be checked by an oscilloscope. If there are differences, the user must modify the setting till the measured pulse is correct.

Page 3

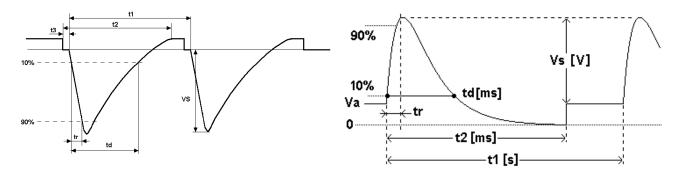
STAN	IDARD T	EST RO	UTINE		FREE	STYLE
V =	100 V		pul	=	Fr	ee
tr =	1us		td	=	50	00us
+/- =	-		Rs	=	75	Ohm
t1 =	1.0 s		t2	=	8.0	Oms
tri =	Auto		cpl	=	Su	ipply
n =	10000					
START CHANGE						
F1	F2	F3	F4	F5	F6	F7

The pulse parameters can be programmed within following range:


Peak Voltage V Rise time tr (10% - 90%) Pulse duration td (10% - 10%) Polarity Internal resistor Rs	20V – 600V 1μs - 10μs 50μs – 10'000μs Positive / negative 2Ω, 4Ω, 5Ω, 10Ω, 15Ω, 20Ω, 25Ω, 30Ω, 35Ω, 40Ω, 45Ω, 50Ω, 55Ω, 60Ω, 65Ω, 70Ω, 75Ω, 80Ω, 85Ω, 90Ω, 95Ω, 100Ω, 200Ω, 400Ω, 450Ω
	Remark : For internal overload protection UCS 200N limits the output voltage for Rs = 2Ω Vmax = $150V$ Rs = 4Ω Vmax = $330V$
External resistor Rs	At the rear of the UCS 200N any resistor can be connected to realize other values then listed above. An internal 10Ω resistor is in series with the external resistance. (10Ω resistor is an internal overload protection)
	Ri – 100 internal + external value

Ri = 10Ω internal + external value

4.8. Standards


The **Standards** menu is based on the following standards:

- JASO D001
- SAE J1455
- ISO 7637-1:1990 Pulse 6

Micro pulse generation 5.

Discharge switch: The discharge switch is a highly reproducible semiconductor switch.

5.1. Pulses as per ISO 7637

Testpulse 1	12V System	24V System	
Vs Voltage	0100V	0600V	
Ri Impedance	10Ω	50Ω	
td Duration	2 ms	1 ms	
tr Risetime	1μs	3μs	
t1 (Rep) Repetition rate	0,5 - 5s	0,5 - 5s	
t2 Switch off time	200 ms	200 ms	
t3 (smallest possible time)	< 100μs	<100μs	
Testpulse 2a Vs Voltage Ri Impedance td Duration tr Risetime t1 (Rep) Repetition rate t2 Switch off time	12V System 0 50V 2Ω 50μs 1μs 0,2 - 5s 0 ms	24V System 0 50V 2Ω 50μs 1μs 0,2 - 5s 0 ms	90% Vs [V] Va td[ms] 0 t1 [s]
Testpulse 6	12V System	24V System	v_p t_2 t_3 t_4 t_4 t_5 t_4 t_5 t_6 t_6 t_7 t_8
Vs Voltage	0300V	0300V	
Ri Impedance	30Ω	30Ω	
td Duration	300μs	300μs	
tr Risetime	60μs	60μs	
t1 (Rep) Repetition rate	15s	15s	
t2 Switch off time	1s	1s	
t3 (smallest possible time)	< 100μs	<100μs	

	12V System Passenger Car and Light-Duty Trucks	12V System Heavy-Duty Trucks	24V System
Testpulse	Pulse 1a	Pulse 1b	Pulse 1c
Vs Voltage	-25100V	-150600V	-300600V
Ri Impedance	10Ω	20Ω	50Ω
td Duration	2 ms	1 ms	1 ms
tr Risetime	1μs +0/ -50%	1μs +0/ -50%	3μs +0/ -50%
t1 (Rep) Repetition rate	0,5 - 5s	0,5 - 5s	0,5 - 5s
t2 Switch off time	200 ms	200 ms	200 ms
t3 (smallest possible time)	< 100ms	<100ms	<100ms

5.2.1. Pulses as per SAE J 1455

	Inductive	Mutual
Test voltage	20 - 600V 5V step	20 - 300V 5V step
Internal resistor	20Ω	50Ω
Pulse width	1000µs	15µs
Risetime tr	1μs	1µs
Repetition rate t1 (Rep)	1.0s - 99.0s	1.0s - 99.0s
Battery off time t2	0.0ms - 10000ms	0.0ms - 10000ms

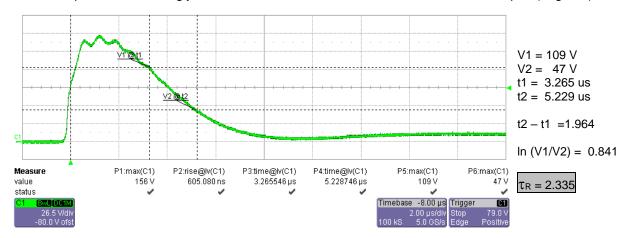
5.3. Pulses as per JASO D 001

	Pulse A2	Pulse B2	Pulse D2
Voltage	0110V	0260V	0170V
Capacitor	$C = 4.7 \mu$	C = 33µF	C = 2.2µ
Pulse duration τ(36,8%)	τ = 2.5us	τ = 2.0ms	τ = 2.5us
Internal resistor R1	0.6Ω	60Ω	1.2Ω
Internal resistor R2	0.4Ω	80Ω	0.9Ω
Polarity	Positive	Negative	Positive
t1	30s	30s	30s
t2		200ms	
t3		< 100µs	

Comments to the JASO Pulse verification

- 1. JASO does not only specify the discharge τ_R value of 2.5µs but also the related RC components,
 - for D2 2.2μF & 1.2Ω
 - for A2 4.7μF & 0.6Ω
 - → Therefore the UCS 200N include the required components.
- JASO also specifies a very short pulse duration of 2.5μs for A2 and D2 which is the result of the above mentioned RC networks. Because the rise time constant (1μs) is in the same range as the discharge time constant τ_R both parameters are influenced by each other. That means the discharge time constant is already influenced by the rise time constant.
 - Therefore it is no more possible to make a pure graphical evaluation of the τ_R parameter as usually made by the 100% to 36.7% wave shape level. The graphical evaluated τ_R value seems much longer due to the influence of the rise time constant
- 3. The real τ_R can be easily calculated by the following method:
 - Measure the time at which the decay has reached 70% of the peak voltage
 - Measure the time at which the decay has reached 30% of the peak voltage

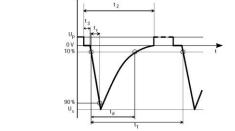
These 2 points are far enough away from the 100% point of the wave and therefore far enough away from the influence of the risetime constant).


- \rightarrow Calculate the real $\tau_{R by}$ using the following formula:
 - $V1 = V_0 \times e^{-t1/\tau}$ $V2 = V_0 \times e^{-t2/\tau}$ → Divide

➔ Divide V1 / V2 and you will get the final formula

τ = (t2-t1) / In()V1/V2

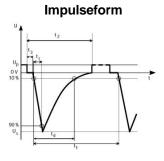
→


Note: JASO requires both, to match the τ_R requirement and to use the related RC components. Therefore it is not possible simply to match the waveform so that the user can detect 2.5µs as time constant between 100% and 36.7% manually out of the measured waveform. This would need to change the internal RC components accordingly so that these values would no more be in the JASO spec (e. g. 2.2µF & 1.2Ω)

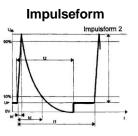
5.4. Pulses as per MBN 10 284 part 2 : August 2001

Testpulse 1	12V System	24V System	42V System Scenario 1	42V b System Scenario 2
Voltage Vs	-100V	-300V	-100V	-300V
Internal resistor Ri	10Ω	10Ω	30Ω	90Ω
Duration td	2 ms	2 ms	6 ms	2 ms
Rise time tr	1μs	1μs	1μs	1μs
Repetition rate t1 (Rep)	5s	5s	5s	5s
Switch off time t2	200 ms	200 ms	200 ms	200 ms
t3 (smallest possible time)	< 100µs	<100µs	<100µs	<100µs
Testpulses	5000	5000	5000	5000

Testpulse 2	12V System	24V System	42V a System Scenario 1	42V b System Scenario 2
Voltage Vs	100V	150V	100V	300V
Internal resistor Ri	10Ω	10Ω	30Ω	90Ω
Duration td	0,05 ms	0,05 ms	0,15 ms	0,05 ms
Rise time tr	1μs	1μs	1μs	1μs
Repetition rate t1 (Rep)	5s	5s	5s	- 5s
Switch off time t2	200 ms	200 ms	200 ms	200 ms
Testpulses	5000	5000	5000	5000
			U A	



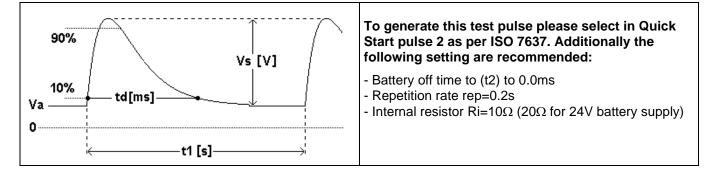
5.4.1. Pulses as per NBM 22100 –2 : August 1999


Testpulse 1

Testpulse 1	12V System	24V System
Voltage Vs	-150V	-300V
Internal resistor Ri	4Ω	4Ω
Duration td	2 ms	2 ms
Rise time tr	1μs	3μs
Repetition rate t1 (Rep)	0.2s	0.2s
Switch off time t2	200 ms	200 ms
t3 (smallest possible time)	< 100µs	<100μs
Testpulses	50'000	50'000

Testpulse 2	12V System	24V System
Voltage Vs	100V	150V
Internal resistor Ri	4Ω	4Ω
Duration td	50µs	50µs
Rise time tr	1µs	1μs
Repetition rate t1 (Rep)	0.5s	0.5s
Switch off time t2	200 ms	200 ms
Testpulses	5'000	5'000

Testpulse 2


5.5. Special pulses as per VW, Mercedes, Ford, Opel

Pulse 1b as per VW

Fuise in as per viv			
-	12V supply	24V suppl	/
Test voltage	050V	050V	
Internal resistor	10Ω	20Ω	
Pulse width td	0.05 ms	0.05 ms	
Risetime tr	1μs	1μs	
Repetition t1 (Rep)	0,2 s	0,2 s	
Switch off time t2	for approx. td	for approx.	d
10%	vs vs		To generate this test pulse please select in Quick Start pulse 2 as per ISO 7637. Additionally the following setting are recommended: • Polarity negative • Battery off time to (t2) to 0.05ms • Repetition rate rep=0.2s • Internal resistor Ri=10Ω (20Ω for 24V battery supply)

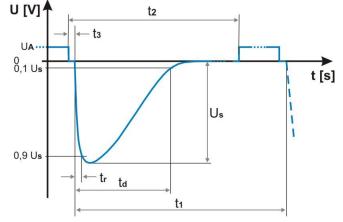
Test pulse 2 as per VW

	12V supply
Test voltage	0 - 50V
Internal resistor	10Ω
Pulse width td	0,05 ms
Risetime tr	1μs
Repetition t1 (Rep)	0,2s

The following test pulses can also be covered by the MPG (examples):

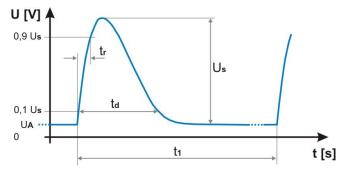
- Ford ES-XW7T	Pulse 1a	The specification is basically the same as per ISO 7637(pulse 2) , except Ri = 4Ω and a negative polarity shall be selected.
- Opel	Pulse 1a	The specification is basically the same (wiper pulse) as per ISO 7637(pulse 2) , except Ri = 2Ω and a negative polarity shall be selected.

5.6. UCS 200Nx.3 as per VW TL 820 66 with Pulse 1 and Pulse 2 (4 Ω)

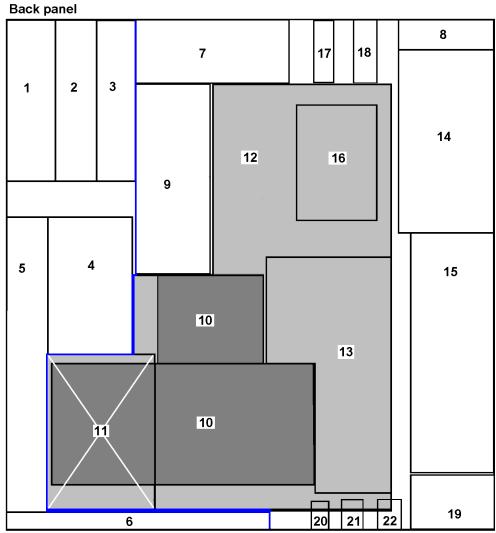

The UCS 200Nx.3 models includes the pulse 1 and pulse 2 with a Ri= 4Ω as per Volkswagen standard VW TL 820 66, Table 3

Pulse	Pulses	Us [V]	td [µs]	tr [µs]		erator [Ω]	Remarks
					12 V	42 V	
Pulse 1	5000	-100	2000	1	4	10	Voltage switch-off 200 ms
Pulse 2	5000	+75	50	1	4	10	

Table 3. Settings for interference immunity measurements: pulses 1 . 3 and 6 (12 V and 42 V)


5.6.1. Test sequences for Pulse 1

- Max. 5 Hz ($t_1 = 0.2$ s) pulse repetition frequency,
- at least 5 000 pulses,
- at terminal 30 at least 50 pulses,
- t₂ = duration of the voltage switch-off,
- t₃ = minimum possible time between switching off the battery and the start of the pulse



5.6.2. Test sequences for Pulse 2

- Max. 0,2 Hz ($t_1 = 5$ s) pulse repetition frequency,
- at least 5 000 pulses,
- at terminal 30 at least 50 pulses,

6. **Test Equipment UCS 200N**

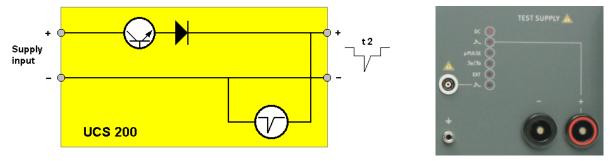
Front panel

Control unit

- Power supply board 1
- 2 Interface board
- 3 Controller board
- 4 Power supply transformer

High voltage unit

- High voltage power supply 9
- Storage capacitor 10
- Relays driver board 11
- Micropulses board 12


Coupling/decoupling unit16Decoupling chokes

- 17 External input
- 18 DC Input
- 19 + Coupling

- Filter board / connecting board 5
- 6 Keyboard / LCD- display
- General power supply input, filter 7
- 8 Ventilation
- 13 Coupling board
- DC Switch 14
- Burst board 15
- 20 CRO Trigger
- 21 50 Ohm Output
- LEDs 22

6.1. Battery switch

- The battery switch is located on the right part of the equipment and can switch off the battery supply for the DUT. The time off can be selected. The dc power is switched off during pulse generation of e.g. pulse 1. See the figure and the table on the previous page.
- When the UCS 200N is powered the battery switch is set into operation. Without being triggered the switch is closed and the DUT is powered. The red LED on the front panel of the equipment indicates the switching condition.
- The switching off procedure is automatically selected when negative pulses are generated. The range for switching off time is at 0ms and 0.1ms 9.9s. The maximum value is limited by the repetition rate. The synchronisation, switching off and pulse generation, is realized in the control unit.

- For positive pulse generation the operator can select whether the battery supply is switched off or not. The range for switching off time is from 0.1ms to 9.9s. The maximum value is limited by the repetition rate. If no switching off is required the pulses are superimposed to the + line.
- The switching off procedure is mandatory for negative pulse generation. Due to decoupling, the low impedance battery is disconnected and the whole energy is surged to the DUT. For positive pulses the battery is additionally decoupled by a diode. For negative pulses 0ms also can be selected. The operator shall be aware that most of the pulsed energy will be absorbed by the low impedance battery. The 0ms setting shall therefore not been selected for normal test procedures.
- The resolution of the OFF TIME setting is as follows:

Range	Step [ms]	
0 to 1ms	0.01	
1 to 10ms	0.1	
10 to 100ms	1	
100 to 1000ms	10	
1000 to 10000ms	100	

- The switch can carry a nominal current of 50A and has a voltage capability of 800V.
- The switch includes a short-circuit protection control unit. The switch is a solid state device.
- The switch is a solid state device.

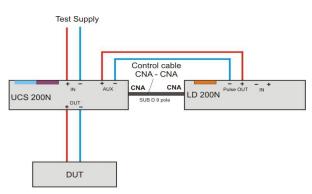
6.2. The coupling network

Via coupling network the pulses are injected to the lines of a vehicle battery supply system, according ISO 7637 as well as SAE J1113.

The coupling mode, capacitive coupling to the + line or via capacitive coupling clamp to signal lines, is selected via the front panel keyboard of the UCS 200N or by ISO.control software.

The following options are available:

	UCS 200N50.x	UCS 200N100.x	UCS 200N150.x	UCS 200N200.x
DC supply	max. 80V	max. 80V	Max. 80V	max. 80V
current	50A	100A	150A	200A
Inrush current	100A 500ms	150A 500ms	none	none



CAUTION!

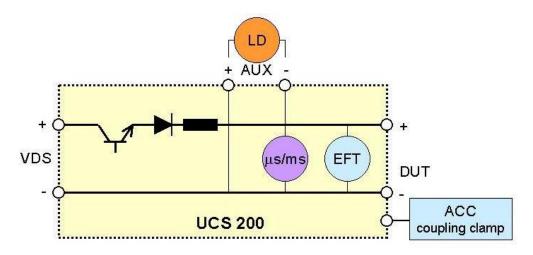
Care must be taken that the inrush is not exceeded. Exceeding the inrush current limit, for any amount of time, can result in damage to the equipment. Be sure to set the current limit on the source accordingly. Using a battery is dangerous and not supported.

Installation:

The following connection between external generators (LD 200N) and coupling network (UCS 200Nx) has to be made:

LD 200N

_


- Connect a 9-Pin SUB-D cable as a control line between LD 200N (CNA) ⇔ UCS 200 (CNA).
- Connect the \pm pulse out of the LD 200N to the \pm Aux of the UCS 200
- Connect the DUT to the output of the UCS 200.
- Select "F5 EXTERN" at the UCS *

* If you are using iso.control to remote control the generators, this is be done by the software.

Control signals to UCS 200N :

Device	Control signals
from LDG	polarity, trigger battery switch, interlock, pulse onto the + potential

6.2.1. UCS 200N Coupling network general diagram

Input:

Pulse	Pulse Simulator Type
DC power supply +/- and pulse	VDS or external
Pulse 1, 1a, 2, 6 (ISO)	Internal from UCS 200N module
Pulse A2, B2 and D2 (Jaso)	Internal from UCS 200N module
Pulse 3a, 3b	Internal from UCS 200N module
Pulse 5, 7 (ISO, Ford, Chrysler)	External LD 200N
Pulse A1, B1 and D1 (Jaso)	External LD 200N

Output:

+/- power supply lines for the DUT or DUT according ISO 7637 part 1 Coaxial output for connecting a capacitive coupling clamp according ISO 7637 part 3

Control functions

All functions of the coupling network are controlled via the keyboard of the pulse generators. All test pulses are available at the central output of the UCS 200N.

Additionally the coupling network may also be controlled fully automatic via iso.control. All coupling modes and test pulses are then controlled by the computer.

Before starting a test procedure the button TEST ON shall be pressed and the related LED is alighted.

Please take care that, within a fully automatic test setup which is supported by the iso.control software, all units of the setup must be switched on. This is necessary to support all necessary communication between the instruments.

7. Technical data

7.1. EFT / Burst pulse 3a/3b as per ISO 7637-2

7.1.1. Pulse specification

Open circuit	U = 25V - 1000V	± 10 %	
at 50 ohm	U = 13V - 500V	± 10 %	
Rise time (10%-90%)	5ns	± 30%	
Pulse duration (10%-10%)	150ns	± 30%	
Source impedance	Zq = 50 Ω	± 20%	
Polarity	Pulse 3a negative and pulse 3b positive		

7.1.2. Settings

Voltage Setting	25V – 1000V in 5V steps
Burst duration	t4 = 0.1ms - 999.9ms
Burst repetition rate	$\begin{array}{rll} t5 = & 0 \mbox{ ms - 9,999ms / man} \\ t5 \leq & 9,999ms \Rightarrow \mbox{Auto Trigger} \\ t5 > & 9,999ms \Rightarrow \mbox{ Man Trigger} \end{array}$
Spike frequency	f = 0.1kHz - 200kHz t1 = 5μs - 10ms
Test time	T = 0:01 min - 999:59 min T > 999:59 min = ∞
Trigger	Automatic repetition of bursts Manual trigger of one single burst External trigger of one single burst
7.1.3. Output	

Direct Coupling network DUT supply DC CRO Trigger

via HV coaxial connector 50 Ω to + 80V / 50A / 100A / 200A +5V rectangular trigger signal

Free programmable pulse parameters

7.2. Micro pulses 1 & 2 as per ISO 7637-2

7.2.1. Pulse specification and settings

No load
Voltage settings
Pulses
Source impedance selectable

Polarity

FREESTYLE mode

Peak Voltage V Rise time tr (10% - 90%) Pulse duration td (10% - 10%) Polarity Internal resistor Rs

Operation Front panel iso.control software

ISO 7637 pulses

Pulse 1 (12V battery supply)

Rise time Pulse width Source impedance

Pulse 1a

Rise time Pulse width 3μs +0% // -50% 1ms ±10%

50Ω±10%

2ms ±10%

 $10\Omega \pm 10\%$

Source impedance

Pulse 2a (12V/24V) Rise time

Pulse width

1μs +0% // -50%

0.05ms ±10%

2Ω ±10%

Note: Above the ISO standard voltages, the rise time may deviate from the 1us tolerance listed in the standard.

 $U = 20V - 200V \pm 10\%$ 20V - 600V in 5V steps

positive / negative

50µs - 10'000µs

positive / negative

Via function keys Via user software

1µs +0% // -50%

20V - 600V

1μs - 10μs

2 - 450Ω

pulses 1, 1a and 2 as per ISO 7637-2 2 Ω , 4 Ω , 10 Ω , 20 Ω , 30 Ω , 50 Ω , 90 Ω and as option EXTERN (Rs = 10 Ω +Rs_{ext}.)

realize other values then listed above

At the rear of the UCS 200N any resistor can be connected to

Pulse 6 (12V/24V)

Rise time Pulse width Source impedance

Source impedance

60μs +0% // -50% 300μs ±10% 30Ω ±10%

SAE J1113 Pulses

SAE pulse 1a	
Rise time	60µs +0% // -50%
Pulse width 10%-10%	300μs ±10%
Source impedance	30Ω ±10%
SAE pulse 1b	
Rise time	1μs +0/ -50%
Pulse width 10%-10%	1 ms ±20%
Source impedance	20Ω ± 20%
SAE pulse 1c	
Rise time	3µs +0/ -50%
Pulse width 10%-10%	1 ms ±20%
Source impedance	50Ω ±20%
As options	

SAE pulses as per SAE J 1455 SAE Mutual Rise time 1µs ±20% Bulaa width 270(270) 15 a 2000(

Pulse width 37%-37%	15μs ±20%
Source impedance	50Ω ±10%
SAE Inductive	
Rise time	1μs ±20%
Pulse width 37%-37%	1000us +20%

 Pulse width 37%-37%
 $1000 \mu s \pm 20\%$

 Source impedance
 $20\Omega \pm 10\%$

JASO pulses as per JASO D 001 (only available for UCS 200Nx.2 models)

Pulse A2 (12V) JASO Capacitor

Pulse duration τ R1 R2 Polarity

Pulse B2(12V) JASO

Capacitor Pulse duration τ R1 R2 Polarity

Pulse D2(12V) JASO

Capacitor Pulse duration τ R1 R2 Polarity C = 4.7μ F $\tau(36,8\%) = 2.5us \pm 30\%$ $0.6\Omega \pm 10\%$ $0.4 \Omega \pm 10\%$ Positive C = 33μ F $\tau(36,8\%) = 2.0ms \pm 20\%$ $60\Omega \pm 10\%$ $80 \Omega \pm 10\%$ Negative C = 2.2μ F $\tau(36,8\%) = 2.5us \pm 30\%$ $1.2\Omega \pm 10\%$ $0.9 \Omega \pm 10\%$

Positive

Examples of manufacturer requirements:

MBN 10284 pulses

Pulse 1 (12V supply) Rise time Pulse duration Source impedance	1μs +0% // -50% 2 ms ±10% 10Ω ±10%
Pulse 1 (24V supply) Rise time Pulse duration Source impedance	1μs +0% // -50% 2 ms ±10% 10Ω ±10%
Pulse 1 Scenario 1 (42V supply) Rise time Pulse duration Source impedance	1μs +0% // -50% 6 ms ±10% 30Ω ±10%
Pulse 1 Scenario 2 (42V supply) Rise time Pulse duration Source impedance	1μs +0% // -50% 2 ms ±10% 90Ω ±10%
Pulse 2 (12V supply) Rise time Pulse duration Source impedance	1μs +0% // -50% 0,05 ms ±10% 10Ω ±10%
Pulse 2 (24V supply) Rise time Pulse duration Source impedance	1μs +0% // -50% 0,05 ms ±10% 10Ω ±10%
Pulse 2 Scenario 1 (42V supply) Rise time Pulse duration Source impedance	1μs +0% // -50% 0,15 ms ±10% 30Ω ±10%
Pulse 2 Scenario 2 (42V supply) Rise time Pulse duration Source impedance	1μs +0% // -50% 0,05 ms ±10% 90Ω ±10%
7.2.2. Trigger	
Automatic Repetition rate Manual Extern	Auto release with preselected parameters 0.2s - 99.0s (1.0s SAE pulses) Manual release of a single event External release by external trigger

7.2.3. Input / Output

Battery switch

+/- output	safety laboratory plugs for max. 80 V / 50 A / 100 A / 200 A
Coupling	Coupling to + line (capacitive coupling)
Decoupling	by diode and battery switch

Switch off time selectable

t2 = 0 - 10'000ms

7.3. Coupling Network

DC supply voltage	max. 80V

Options	UCS 200N50x	UCS 200N100x	UCS 200N150x	UCS 200N200x
DC current	50A	100A	150A	200A
Inrush current 500ms	100A	150A		
Weight	25kg	29.2kg	35.35kg	approx. 35kg
Dimension UCS & CN	19" 3HU	19" 6HU	19" 9HU	19" 9HU

Input	
DC power supply +/- and pulse	VDS 200x or external dc supply
Pulse 5, 7 (ISO, Ford, Chrysler)	LD 200N generator
Pulse A1, B1 and D1 (Jaso)	
Control	Control cable from external generator (Load Dump / MPG)
Output	
DUT supply	80VDC
	50A, 100A, 150A, 200A (depending on model)
Coaxial output	To connect external coupling devices as capacitive coupling clamp

7.4. General

Power mains supply	230V/115V, 50/60Hz, less than 75W
Fuse	2 A slow blow 230V
	4 A slow blow 230V
Safety	
Safety circuit	External interlock capability
Warning lamp	voltage free contact max. 250V 5A
Design	per IEC 1010, EN 61010
Interfaces	
USB interface	
Parallel IEEE	Address 1-31

=> Not relevant data for the standards can be changed by the manufacturer <=

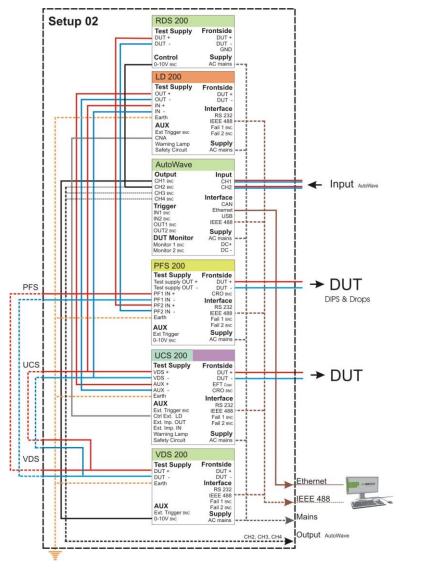
8. Maintenance

8.1. General

The generator is absolutely maintenance-free by using a solid state semiconductor switch to generate transients.

8.2. Test set-up

When setting up the test national and international regulations regarding human safety have to be guaranteed.


It is recommended to connect the simulator to the ground reference plane of the test set-up.

The generators of the series 200, UCS, LD, PFS and VDS can be linked together to a fully automotive test set-up.

The set-up communicates via the IEEE/GPIB bus and is controlled by iso.control software.

For setting up the system see the following figures:

Each generator can be operated individual as a single equipment.

Example wiring ISO System

8.3. Calibration and Verification

8.3.1. Factory calibration

Every AMETEK CTS generator is entirely checked and calibrated as per international standard regulations before delivery. A calibration certificate is issued and delivered along with a list of the equipment used for the calibration proving the traceability of the measuring equipment. All auxiliary equipment and accessories are checked to our internal manufacturer guidelines.

The calibration certificate and the certificate of compliance (if available) show the date of calibration.

The AMETEK CTS equipment is calibrated in the factory and marked with a calibration mark. The used measuring instruments are traceable to the Swiss Federal Office of Metrology.

The calibration date is marked. The validity of the calibration is to the responsibility of the user's quality system. Neither the certificate of calibration nor the corresponding label mark any due date for re-calibration.

Example: Calibration mark

8.3.2. Guideline to determine the calibration period of AMETEK CTS instrumentation

Our International Service Departments and our QA Manager are frequently asked about the calibration interval of AMETEK CTS equipment.

AMETEK CTS doesn't know each customer's Quality Assurance Policy nor do we know how often the equipment is used and what kind of tests is performed during the life cycle of test equipment. Only the customer knows all the details and therefore the customer needs to specify the calibration interval for his test equipment.

In reply to all these questions we like to approach this issue as follows:

AMETEK CTS make use of a solid-state semiconductor switch technique to generate high voltage transients. A precious advantage of this technique is the absolute lack of periodical maintenance effort. In consequence, thereof a useful calibration period must be defined based on two criteria:

- The first one is the customer's Quality Assurance Policy. Any existent internal regulation must be applied at highest priority. In the absence of such internal regulation the utilization rate of the test equipment must be taken into consideration.
- Based on the experience and observation collected over the years **AMETEK CTS recommends a calibration interval of 1 year** for frequently used equipment. A 2-years calibration interval is considered sufficient for rarely used test generators in order to assure proper performance and compliance to the standard specifications.

8.3.3. Calibration of Accessories made by passive components only

Passive components do not change their technical specification during storage. Consequently, the measured values and the plots stay valid throughout the storage time. The date of shipment shall be considered as the date of calibration.

8.3.4. Periodically In-house verification

Please refer to the corresponding standard before carrying out a calibration or verification. The standard describes the procedure, the tolerances and the necessary auxiliary means. Suitable calibration adapters are needed. To compare the verification results, AMETEK CTS suggests for refer to the waveshape and values of the original calibration certificate.

All calibrations and verifications are always done without mains supply voltage connected to the coupling network input.

Before starting the calibration or verification

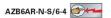
from the generator and from the coupling network

8.4. Connectors to the DUT

For connectors please download the catalogue from Multi Contact : www.multi-contact.com
 100A Plugs and connectors from Multi Contact

Note: If the manufacturer says that they're not available, please explain that it's part of an existing installation.

Safety sockets KBT6AR-N/...-S with snap-in lock and crimp connection Model KBT6AR-N/...-S safety sockets are sockets with locking devices and for crimping onto highly flexible Cu conductor with cross-sections of 10mm2, 16mm2 or 25mm2.


This safety socket is suitable for mating with either safety flush-mounting plugs or plugs model KST6AR-N. Used together with a flush-mounting plug it acts as an appliance connector and with plugs as a coupler.

Safety branch "Y" adapter AZB6AR-N-S/6-4

Safety branch adapter with snap-in lock and ergonomic PA/TPE insulation that grips well. Mating plugs with suitable locking devices can be snap-locked into the socket. With one pick-off socket Ø 6mm and two safety sockets Ø 4mm for voltage tests up to 600V, CATIII.

9. Delivery

9.1. **Basic accessory**

Some of the included basic accessories that are provided with the UCS 200Nx unit depend on the current capability of the unit.

All table top UCS 200Nx.2/.3 units come with 1 of the following power mains cables:

Remark:

The country specific power mains cable is only provided, if the UCS 200Nx unit is delivered as a table top equipment.

If the generator is built into a rack, the rack itself is delivered with the number of required power mains cables and suitable connector depending on region and country.

UCS 200N50.2/.3

Additional accessories 50A model:

-1 pair lab cable 4mm (rd/bl)

-2 pair 100A connectors (rd/bl)

-1 instruction

UCS 200N100.2/.3 Additional accessories 100A

model:

-1 pair lab cable 4mm (rd/bl) -2 pair 100A connectors (rd/bl)

-1 instruction

UCS 200N150.2/.3 Additional accessories 150A model:

-2 pair high current connectors (rd/bl) for the front / rear

UCS 200N200.2/.3 Additional accessories 200A model: -2 pair high current connectors (rd/bl) for the front

9.2. Additional Accessories and options (separately available)

• Remote software " iso.control "

- Test, analysis and documentation
- Licensed version for testing according most automotive standards
- Report generator with export function to word-processing software
- ACC

Automotive Capacitive Coupling Clamp for coupling pulses 3a / 3b to I/O lines. Umax for pulses 3a/3b : +/-1kV

• CA EFT kit

consisting of 1x KW 50 Ω matching resistor (1:100) type KW 50 1x 1000 Ω matching resistor (1:1000) type KW 1000 1x Adapter AD-CA EFT for verification at + supply line 1x Plastic case

Remark:

User of a 150A or 200A model will also need MSA 250-32 adapter to verify the pulse at the + supply line.

- CIP9136A (ISO 7637-3 ICC method)
 Inductive coupling clamp for ICC methode according to ISO7637-3
- PCJ 9201B

Cal Jig for the CIP9136A

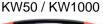
MN-CIP9136

includes:

- Fischer to N Adapter to Bulk Current injection clamp
- 50 Ω HV coax cable 1 m
- AD-N-SC N connector with short circuit

CA ISO

Calibration adapter with resistors for pulse verification as per standard ISO 7637-2 (micro pulses) and ISO 16750-2 (load dump).


Remark:

Users of UCS 200N150.2/.3 or UCS 200N200.2/.3 models also need an AD-CA ISO and MSA 250-32 (see below) to adapt the CA ISO to the system

- AD-ISO-100A Art # 105267 100A to 32A 4mm banana
- MSA 250-32, 1 pair adapter max 32A 4mm banana (# 1004143)
 1) to adapt AD-CA ISO
 2) for burst verification on the +DUT output line
- AD-CA ISO (only 150 & 200A Models) to adapt the CA-ISO (# 107594)

10. Appendix

10.1. Declaration of CE-Conformity

10.1.1. UCS 200N50

Manufacturer :	AMETEK CTS GmbH
Address:	Sternenhofstr. 15 CH 4153 Reinach
	Switzerland

declares, that under is sole responsibility, the product's listed below, including all their options, are conformity with the applicable CE directives listed below using the relevant section of the following EC standards and other normative documents.

Product's name:	Ultra compact generator
Model Number(s)	UCS 200N50.2
	UCS 200N50.3

Low Voltage Directive 2014/35/EU

Standard to which conformity is declared:

EN 61010-1:2011 Safety requirements for electrical equipment for measurement, control, and laboratory use.

EMC Directive 2014/30/EU

Standard(s) to which conformity is declared:

EN 61326-1:2013	Electrical equipment for measurement, control and laboratory use
	(Requirements for devices to use in industrial area.)
EN 61000-3-2:2014	Limits for harmonic current emissions
EN 61000-3-3:2013	Limitation of voltage changes, voltage fluctuations and flicker in public low- voltage supply systems.

The purpose of this instrument is the generation of defined interferences signals for EMI immunity testing. Depending on the arrangement of the test rig, the configuration, the cabling and the properties of the EUT itself, a significant amount of electromagnetic radiation may result that could also affect other equipment and systems. The user himself or herself is ultimately responsible for the correct and controlled operation of the rig. In case of doubt, the tests should be carried out in a Faraday cage.

Manufacturer AMETEK CTS GmbH Sternenhofstr. 15 CH 4153 Reinach Phone: +41 61 204 41 11 Fax: +41 61 204 41 00

A. Burger Design and Research Reinach BL, Switzerland 12. January 2022

Bу

10.1.2. UCS 200N100

Manufacturer : Address: AMETEK CTS GmbH Sternenhofstr. 15 CH 4153 Reinach Switzerland

declares, that under is sole responsibility, the product's listed below, including all their options, are conformity with the applicable CE directives listed below using the relevant section of the following EC standards and other normative documents.

Product's name:	Ultra compact generator
Model Number(s)	UCS 200N100.2
	UCS 200N100.3

Low Voltage Directive 2014/35/EU

 Standard to which conformity is declared:

 EN 61010-1:2011
 Safety requirements for electrical equipment for measurement, control, and laboratory use.

EMC Directive 2014/30/EU

Standard(s) to which conformity is declared:

EN 61326-1:2013	Electrical equipment for measurement, control and laboratory use
	(Requirements for devices to use in industrial area.)
EN 61000-3-2:2014	Limits for harmonic current emissions
EN 61000-3-3:2013	Limitation of voltage changes, voltage fluctuations and flicker in public low- voltage supply systems.

The purpose of this instrument is the generation of defined interferences signals for EMI immunity testing. Depending on the arrangement of the test rig, the configuration, the cabling and the properties of the EUT itself, a significant amount of electromagnetic radiation may result that could also affect other equipment and systems. The user himself or herself is ultimately responsible for the correct and controlled operation of the rig. In case of doubt, the tests should be carried out in a Faraday cage.

Manufacturer AMETEK CTS GmbH Sternenhofstr. 15 CH 4153 Reinach Phone: +41 61 204 41 11 Fax: +41 61 204 41 00

A. Burger Business Manager Conducted EMC Reinach BL, Switzerland 12. January 2022

By

10.1.3. UCS 200N150

Manufacturer : Address: AMETEK CTS GmbH Sternenhofstr. 15 CH 4153 Reinach Switzerland

declares, that under is sole responsibility, the product's listed below, including all their options, are conformity with the applicable CE directives listed below using the relevant section of the following EC standards and other normative documents.

Product's name:	Ultra compact generator
Model Number(s)	UCS 200N150.2
	UCS 200N150.3

Low Voltage Directive 2014/35/EU

 Standard to which conformity is declared:

 EN 61010-1:2011
 Safety requirements for electrical equipment for measurement, control, and laboratory use.

EMC Directive 2014/30/EU

Standard(s) to which conformity is declared:

EN 61326-1:2013	Electrical equipment for measurement, control and laboratory use	
	(Requirements for devices to use in industrial area.)	
EN 61000-3-2:2014	Limits for harmonic current emissions	
EN 61000-3-3:2013	Limitation of voltage changes, voltage fluctuations and flicker in public low- voltage supply systems.	

The purpose of this instrument is the generation of defined interferences signals for EMI immunity testing. Depending on the arrangement of the test rig, the configuration, the cabling and the properties of the EUT itself, a significant amount of electromagnetic radiation may result that could also affect other equipment and systems. The user himself or herself is ultimately responsible for the correct and controlled operation of the rig. In case of doubt, the tests should be carried out in a Faraday cage.

Manufacturer AMETEK CTS GmbH Sternenhofstr. 15 CH 4153 Reinach Phone: +41 61 204 41 11 Fax: +41 61 204 41 00

A. Burger Business Manager Conducted EMC Reinach BL, Switzerland 12. January 2022

By

10.1.4. UCS 200N200

Manufacturer : Address: AMETEK CTS GmbH Sternenhofstr. 15 CH 4153 Reinach Switzerland

declares, that under is sole responsibility, the product's listed below, including all their options, are conformity with the applicable CE directives listed below using the relevant section of the following EC standards and other normative documents.

Product's name:	Ultra compact generator
Model Number(s)	UCS 200N200.2
	UCS 200N200.3

Low Voltage Directive 2014/35/EU

 Standard to which conformity is declared:

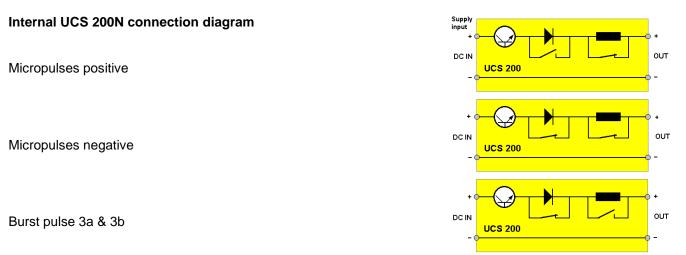
 EN 61010-1:2011
 Safety requirements for electrical equipment for measurement, control, and laboratory use.

EMC Directive 2014/30/EU

Standard(s) to which conformity is declared:

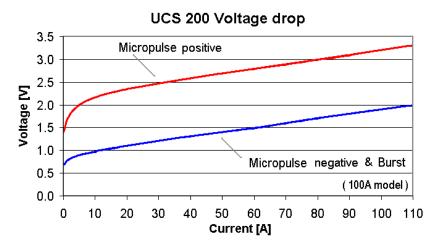
EN 61326-1:2013	Electrical equipment for measurement, control and laboratory use	
	(Requirements for devices to use in industrial area.)	
EN 61000-3-2:2014	Limits for harmonic current emissions	
EN 61000-3-3:2013	Limitation of voltage changes, voltage fluctuations and flicker in public low- voltage supply systems.	

The purpose of this instrument is the generation of defined interferences signals for EMI immunity testing. Depending on the arrangement of the test rig, the configuration, the cabling and the properties of the EUT itself, a significant amount of electromagnetic radiation may result that could also affect other equipment and systems. The user himself or herself is ultimately responsible for the correct and controlled operation of the rig. In case of doubt, the tests should be carried out in a Faraday cage.

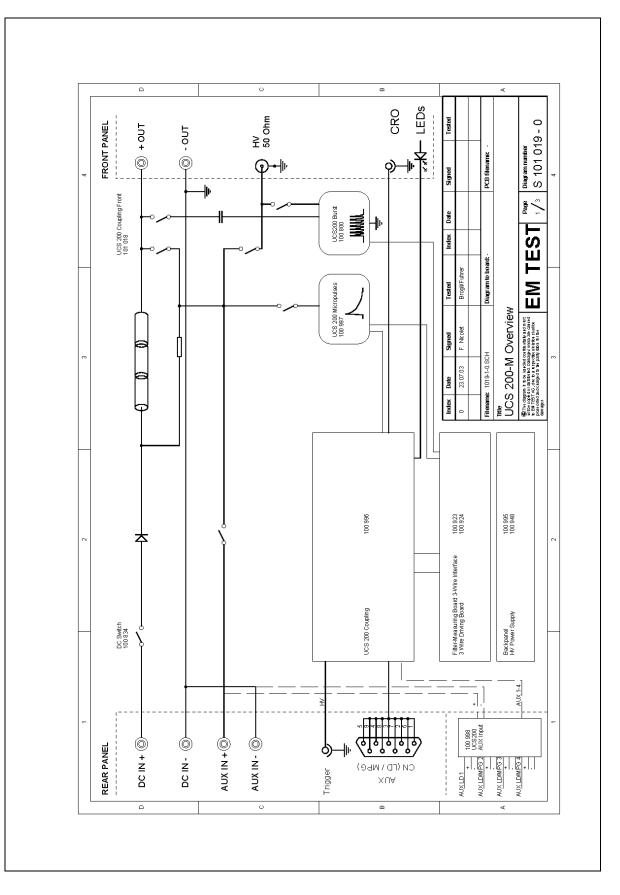

Manufacturer AMETEK CTS GmbH Sternenhofstr. 15 CH 4153 Reinach Phone: +41 61 204 41 11 Fax: +41 61 204 41 00

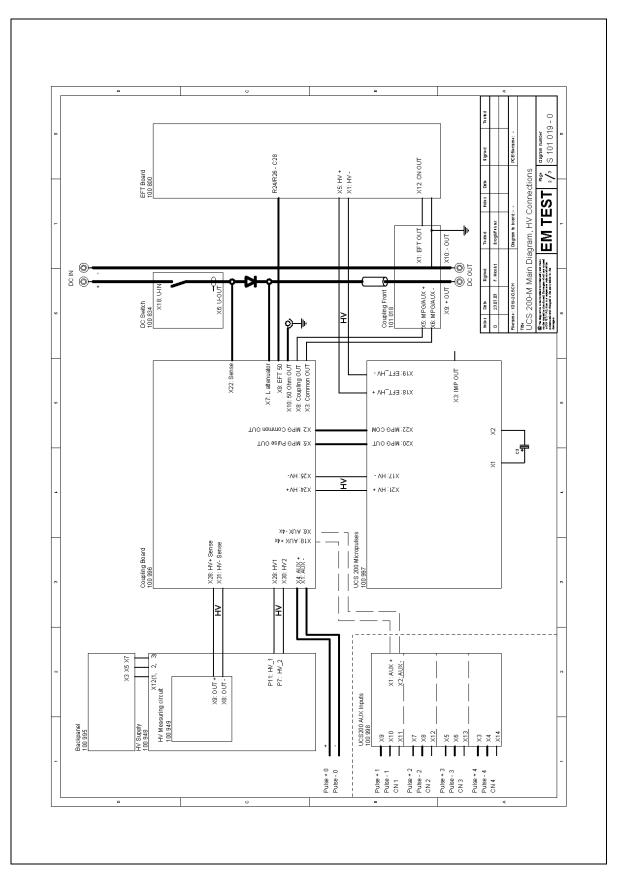
A. Burger Business Manager Conducted EMC Reinach BL, Switzerland 12. January 2022

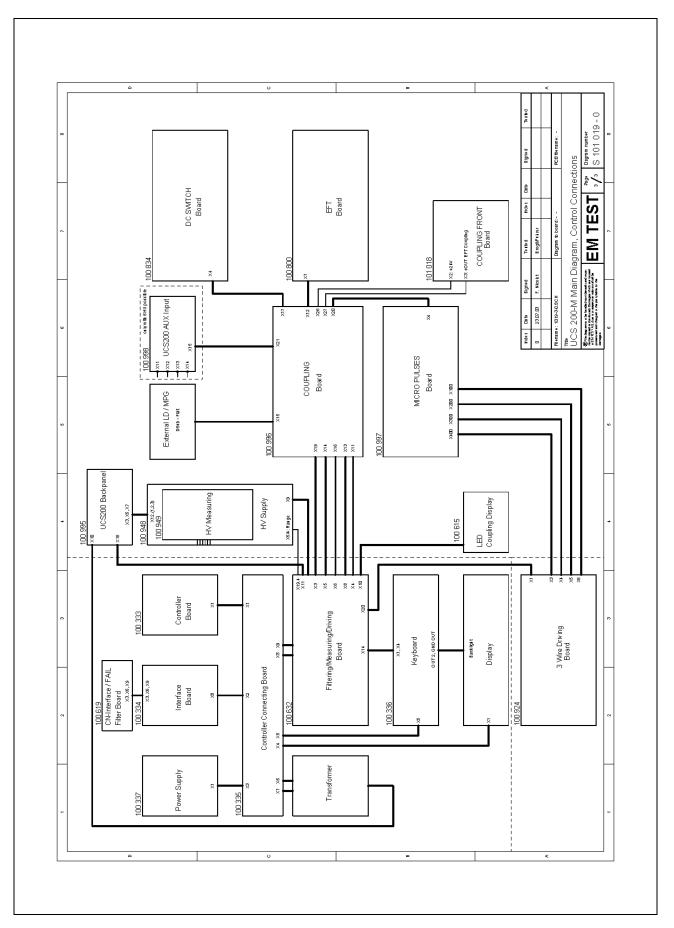
By


10.2. UCS 200N - internal Voltage drop

Depends on the pulse setting a different Voltage drop appears inside the UCS 200N. This voltage drop can be compensated by the battery supply (VDS 200) setting, The iso.control software compensate the voltage drop automatically. In the CNA setup for each case a voltage drop can be setted.


UCS 200 Voltage drop 3.0 Micropulse positive 2.5 Voltage drop [V] 2.0 1.5 Micropulse negative & Burst 1.0 0.5 (50A model) 0.0 0 5 10 15 20 25 30 35 40 45 50 Current [A]



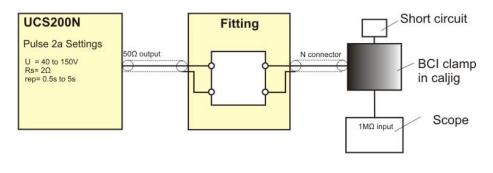

Voltage drop UCS 200N100 model.

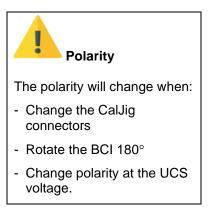
10.3. UCS 200N - General Diagram

10.4. Main diagram control connection

10.5. Main diagram high voltage connection

10.6. Setup for ICC testing as per ISO 7637-3


For testing as per ISO 7637-3 with the ICC clamp the standard recommends an output voltage of 3V to 10V. These low voltages can not be realized direct with the UCS 200 generator. A solution for get an ICC pulse is to use a matching network with an attenuator.

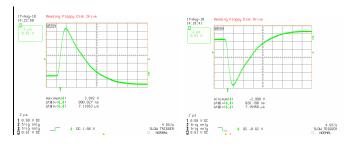

The ICC method specifies the test level as the output voltage measured with the calibration test setup. The coupled pulse 2 in Quickstart mode shall fulfil the requirements of the table below.

Parameters	12V system	24V system	42V system
td in μs	$7\mu s~\pm 30~\%$	$7\mu s~\pm 30~\%$	$7\mu s~\pm 30~\%$
tr in μs	≤1.2 μs	≤1.2 μs	≤1.2 μs

Requirements for the coupled pulse as per ISO 7637-3 chapter 4.6

ICC SET ISO 7637 for ICC calibration and testing

Calibration test setup


The generator setting is according the standard. Important is the verification pulse at the BCI output.AttentionThe MN-CIP9136 is equipped with typical values for the BCI clamp CIP 9136 model.AttentionAn exact fitting needs the original used BCI clamp mandatory.

Example of pulse measurement on Caljig output

BCI Clamp

tr	=	0.88us
td	=	7.2us
		0 00 1/

U = 2.98 V

The user is responsible to use this methode for ICC testing.